Boosey & Hawkes Composer News

Search Catalogue

FEATURED COMPOSERS
Chapela, EnricoMelate Binario (2004) 6'
for solo acoustic guitar

Territory
This work is available from Boosey & Hawkes for the world.

World Premiere
11/25/2004
National Centre of Arts, Blas Galindo Concert Hall, Mexico City
Gonzalo Salazar, guitar /


Composer's Notes  


Melate Binario (1995, revised 2009) for solo guitar is a composition aimed at resolving the dispute between dodecaphony and diatonicism, using the binary system and the popular lottery game Melate. Faced with the dilemma of being able to use the 12 notes beyond the limits of the scales, but having to stick to a strict order, as 12 tone system demands, or being able to choose the preferred order within a small set of notes, as tonal music allows, I found that both languages share the possibility of achieving equally affective music.
So, the odd pages, which when expressed in the binary system always end in 1, are almost identical of the even pages ending in 0, except that the odd ones are dodecaphonic (using 12 notes) and the even ones are diatonic (using only between 6 and 8).
Before starting the concert, a Melate Binario ticket is given out to people to fill out and place their names on. The ticket has 8 boxes that must be marked, either with a 0 or a 1. Each box implies the choice of one of two pages; 1 or 2, 3 or 4, 5 or 6, etc. The total pages to choose from is 8, so the number of possible versions of the work is: 28 =256
During the interval, the tickets must be collected in a transparent urn, so that right before the performance it will be brought onstage for the performer to take a ticket in plain view of the audience, read the resulting combination and announce the name of the winner, dedicating to him or her the performance of the chosen version. Afterwards, to be able to read the music, the score is organized selecting odd pages when the digit marked is 1 and even pages it is 0.
Example:
In this example, the digits 11100000 were marked, which indicates that, from 1 and 2, the odd pages was chosen, from 3 and 4, the odd one, from 5 and 6, the odd one, form 7 and 8, the even one, and so on.
Pages chosen = 11100000 (odd, odd, odd, even, even, even, even, and even)
Pages chosen = 1, 3, 5, 8, 10, 12, 14 and 16.
To find out the version number, the resulting binary number has to be converted to a decimal system.



1


1


1


0


0


0


0


0


(number in binary system)


27


26


25


24


23


22


21


20


(powers of the base)


128


+64


+32


+0


+0


+0


+0


+0


(sum of the powers selected)


128 + 64 + 32 = 224th version

Recommended Recording
Gonzalo Salazar, guitar
CON005 "antagónica"






Mailing List

Sign up for news updates and offers via email

SIGN UP
Audio Visual Gallery
Get Adobe Flash player
ONLINE SCORES

Explore our library of over 1000 online scores

VIEW SCORES
FAQ | Contact Us | Links | About Us | Shop Directory | Careers | Terms of use | RSS Index